DBP SERIES
 HARDWARE MANUAL

Rev 6/93

The warranty performance covers only ELMO's products and only the elimination of problems that are due to manufacturing defects resulting in impaired function, deficient workmanship or defective material. Specifically excluded from warranty is the elimination of problems which are caused by abuse, damage, neglect, overloading, wrong operation, unauthorized manipulations etc.

The following maximum warranty period applies:

12 months from the time of operational startup but not later than 18 months from shipment by the manufacturing plant.

Units repaired under warranty have to be treated as an entity. A breakdown of the repair procedure (for instance of the repair of a unit into repair of cards) is not permissible.

Damage claims, including consequential damages, which exceed the warranty obligation will be rejected in all cases.

If any term or condition in this warranty performance shall be at variance or inconsistent with any provision or condition (whether special or general) contained or referred to in the Terms and Conditions of Sales set out at the back of Elmo's Standard Acknowledge Form, than the later shall prevail and be effective.

How to use this manual - Flow Chart

The DBP HARDWARE MANUAL will lead you toward a successful start-up of your digital amplifier. Please review carefully the following flow chart and write down the chapters that you have to follow in the right order. Only after performing all the steps you may proceed to the software manual.

If you are a new user of the DBP, you better not skip chapters 1-4 which will familiarize you with the product.

tABLE OF CONTENTS

1.Description 7
2. Type Designation 8
3. Technical Specification 9
3.1 Digital I/O specification 10
3.2 Analog input specification 13
3.3 Sensors specification 14
3.3.1 Encoder 14
3.3.2 Resolver 14
3.4 Communication 16
3.4.1 RS232 Configuration 16
3.4.2 RS485 Configuration 16
3.5 Battery backup 16
3.6 Performance 16
4. System Operation 18
4.1 RS485 and Checksum Protocol 18
4.2 Current Control 18
4.2.1 Current feedback, Current feedback multiplier (CFM) and 19Current loop
4.3 Digital current limits 20
4.3.1 Time dependent peak current limit 20
4.4 Digital position and speed control 21
4.5 Operation of the shunt regulator 25
4.6 Commutation signals format 26
4.7 Protective functions 27
4.7.1 Short circuit protection 27
4.7.2 Under/over voltage protection 27
4.7.3 Temperature protection 27
4.7.4 Internal power supply failure 27
4.7.5 Loss of commutation feedback 27
4.7.6 Low back-up Battery voltage 27
5. Terminal Description 33
5.1 Terminals for Horizontal and Rack mounting versions 33
5.2 Mother Boards terminals (MBA-DBP/3U and MBA-DBP/6U) 43
5.3 Terminals for DBP mounted in ENCD 54
5.4 Communication Port Connector 64
6. Installation procedures 65
6.1 Mounting 65
6.2 Wiring 65
6.3 Load inductance 66
6.4 AC power supply 66
6.5 Wiring diagrams 67
6.5.1 Motor's windings 67
6.5.2 AC power wiring 68
6.5.3 Hall sensors wiring 77
6.5.4 RS232 Communication wiring 78
6.5.5 RS485 Communication wiring 79
6.5.6 Main encoder wiring 81
6.5.7 Resolver wiring 82
6.5.8 Auxiliary encoder wiring 83
6.5.9 Pulse/Direction signals wiring 84
7. Start - Up Procedures 85
7.1 Common procedures for all amplifiers types 85
7.1.1 Commutation signals format 85
7.1.2 CFM function 85
7.1.3 Abort logic 85
7.1.4 Setting the auxiliary position input format 86
7.1.5 Selecting the communication bus 86
7.1.6 Preparing the automatic baud rate selection 86
7.2 Setting the main optical encoder format 87
7.3 Setting the R/D circuit 87
8. Applying power - Adjustments 94
Step 1 - Applying Power 94
Step 2 - Establishing the communication 95
Step 3 - Checking the feedback elements 95
Step 4 - Adjusting the current limits 95
Step 5 - Latch mode of the protective functions 96
Step 6 - Connecting the Motor 96
9. Tables and Summaries 97
9.1 Display diagnostics 97
9.2 Summary of DIP switches 98
Appendix A - Current loop response 99
Appendix B - Adding a velocity feedback 101
Appendix C - Differential amplifier connection 102
DIMENSIONAL DRAWINGS 103
PANEL (H), DBP1 104
PANEL (H), DBP2 107
PANEL (H), DBP3 110
PANEL (H), DBP 4 113
PANEL (H), DBP6 116
RACK 3U/13T 119
RACK 3U/20T 122
RACK 6U/14T 125
RACK 6U/21T 128
ENCD - 3U/ 130
ENCD - 6U/ 131
EXTERNAL SHUNT RESISTOR 132
List of ELMO Service Centers 133

1.Description

The DBP series are digital, full wave, three phase servo amplifiers designed for high performance brushless servo motors in the range of up to 7kW. They utilize power MOSFETs and Surface Mounting Technology which contribute to its high efficiency and compact design. The DBP operates from a single AC supply (either single or three phase) and, when using the galvanic isolation option, it can be connected directly to the Mains.

The DBP is constructed from two main PCBs mounted on a heat sink plate. The lower board contains the rectifying bridge, the power switching transistors which drive the motor, terminals for the power stage, the switch mode power supply, the protection logic and commutation logic. The upper $P C B$ is the Digital Control Board (DCB) which contains the digital control logic, terminals for the control stage, D-type connector for the communication and a 4-digit display.

The DBP requires a position sensor in order to enable its operation. It can be either a Resolver or a combination of an optical encoder and Hall effect sensors. When using a Resolver, a small interface card is mounted on top of the DCB.

The DBP is available in either panel version or rack version with two DIN 41612 connectors. The rack version can be fitted in a panel mount enclosure (ENCD-3U or ENCD-6U), that is specially designed for a simple hook-up procedure.

The amplifiers are fully protected against the following faults:

* Under/over voltage
* Shorts between the outputs or between the outputs to ground.
* RMS current limit.
* Insufficient load inductance.
* Loss of commutation signals.
* Excess temperature.
* Excess position error.

Analog Section Standard Features:

* Single AC supply (single or three phase)
* Zero Deadband.
* Motor current monitor.
* Motor speed monitor.
* Extra differential operational amplifier.
* Standard commutation sensors: Hall effect sensors or a Resolver.
* Galvanic isolation of the control stage - option.

Digital Section Standard Features

* Accepts motion commands via RS232 or RS485
* Buffering for pipe lining instructions prior to execution
* Battery-backed RAM for storing user programs and parameters
* Conditional statements for controlling program execution real- time.
* Programmable time and position trip points
* Variables for entering and changing system parameters
* 5 Uncommitted inputs
* 2 uncommitted high speed inputs.
* 10 Uncommitted outputs
* Arithmetic and logic functions for manipulating parameters
* Digital filter with programmable gain, damping and integrator
* Error handling, end of travel, emergency stop, status reporting.
* 0-600,000 quadrature counts/second speed range
* One analog input - 11 bit resolution
* Master/slave operation with programmable following ratio (master information from an optical encoder or from Pulse and Direction inputs)
* Dual-loop capability
* Adjustable continuous and peak current limits
* 4-digit display for diagnostics.

2. Type Designation

3. Technical Specification

Type	AC Supply* min max	Current limits	Size Panel (H)	Size Rack (R)	Weight (Kg)
DBP-12/135	$28-135$	$12 / 24$	DBP2	$3 \mathrm{U} / 20 \mathrm{~T}$	1.4
DBP-20/135	$28-135$	$20 / 40$	DBP3	$6 \mathrm{U} / 21 \mathrm{~T}$	3
DBP- $8 / 270$	$100-270$	$8 / 16$	DBP2	$3 \mathrm{U} / 20 \mathrm{~T}$	1.4
DBP-16/270	$100-270$	$16 / 32$	DBP3	$6 \mathrm{U} / 21 \mathrm{~T}$	3
DBPF-12/135	$28-135$	$12 / 24$	DBP1	$3 \mathrm{U} / 13 \mathrm{~T}$	0.7
DBPF-20/135	$28-135$	$20 / 40$	DBP4	$6 \mathrm{U} / 13 \mathrm{~T}$	1.3
DBPF-30/135	$28-135$	$30 / 60$	DBP6	$6 \mathrm{U} / 21 \mathrm{~T}$	3
DBPF- 8/270	$100-270$	$8 / 16$	DBP1	$3 \mathrm{U} / 13 \mathrm{~T}$	0.7
DBPF-16/270	$100-270$	$16 / 32$	DBP4	$6 \mathrm{U} / 13 \mathrm{~T}$	1.3
DBPF-24/270	$100-270$	$24 / 48$	DBP6	$6 \mathrm{U} / 21 \mathrm{~T}$	3

[^0]
General

* DC output voltage is 130% of AC input voltage.
* 2 KHz current loop response
* Outputs voltages of $+5 \mathrm{~V} / 0.2 \mathrm{~A}, \pm 15 \mathrm{~V} / 0.1 \mathrm{~A}$ for external use.
* Efficiency at rated current - 97\%.
* Operating temperature: $0-50^{\circ} \mathrm{C}$.
* Storage temperature: $-10-+70^{\circ} \mathrm{C}$.

3.1 Digital I/O specification

Digital Inputs:

High/Low input definition: Vil<1V, Vih>2.4V
Maximum input voltage: 30V
Input impedance: 3-7Kohm
Input hysteresis: typ 1V.
When left open: low level.
Input threshold level can be shifted on request.
The fast inputs capture events (input voltage level
going from low to high) of less then $10 \mu \mathrm{sec}$ duration.

Digital Outputs:

High/Low output definition: Vol<0.4V, Voh>4V
Output level: 0-5V
Recommended output current: Iol=Ioh=5mA
Maximum output current $\pm 10 \mathrm{~mA}$
The outputs are normally at low level.

3.2 Analog input specification

Maximum input voltage:

- When R1 (470ohm) is inserted, the absolute value of the input voltage should be less than 5V.
- When the absolute value is higher than $5 \mathrm{~V}, \mathrm{R}$ (Kohm) $=2 \mathrm{Vi}-10$ should be inserted. The $\mu \mathrm{P}$ reads always +5 V .

Resolution of the digital conversion: 11 bit full scale.

Typical offset: 5 bits

ANALOG INPUT

3.3 Sensors specification

3.3.1 Encoder

The encoder must be incremental with two TTL channels in quadrature and 90° phase shift.
High/Low input definition: Vil<1.5V, Vih>3V
Input voltage range: $0-15 \mathrm{~V}$
Input hysteresis 1.5 V
Input impedance: 1 Kohm to 5 V .
Maximum frequency main encoder: 150 KHz
Maximum frequency auxiliary encoder: 250 KHz
Noise protection by analog and digital filters
When left open the input is internally pulled to high level.

3.3.2 Resolver

Resolver Option Feature:

* 10,12,14 and 16 bit resolution set by the user.
* Maximum tracking rate 1040 rps (10 bits).
* Velocity output.
* Encoder A, B, outputs + programmable index output.

Reference parameters:
Max. voltage: 20 Vptp or 7 Vrms
Minimum output voltage: 2Vrms
Max. current: 80mA
Max frequency: 20 KHz outputs:

3.4 Communication

3.4.1 RS232 Configuration

The RS232 is configured for 8-bit, no parity, full duplex and it will echo all the transmissions.

Baud rates: $300,600,1200,2400,4800,9600,19200,38400,57600$
No hardware handshaking is required.

3.4.2 RS485 Configuration

The RS485 is configured for 8-bit, no parity, half duplex.
Baud rates: 300,600,1200,2400,4800,9600,19200,38400,57600
No hardware handshaking is required.

3.5 Battery backup

180 mAH battery that at rated operating and storage condition will last for at least 40,000 non operating hours.

3.6 Performance

```
Position range: +2 230 quadrature counts
Velocity range: +600,000 counts/sec
Velocity resolution: 1 count/s
Acceleration range: 91 - 11.8\times10 }\mp@subsup{}{}{6}\mathrm{ count/s
Acceleration resolution: 91 counts/s }\mp@subsup{}{}{2
```


Notes:

* R119- LINE TERMINATION RESISTOR, USED ON BOTH ENDS OF LONG LINES. NORMALLY NOT MOUNTED.
* R802 - SMD RESISTOR. NORMALLY NOT MOUNTED

COMMUNICATION

4. System Operation

4.1 RS485 and Checksum Protocol

The RS485 in the DCB is configured as 8-bit, no parity, 1 stop bit, half duplex. The following baud rates are available: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600. No hardware handshaking is required.

In the RS-485, which is a Half Duplex system, all the Transmitters and all the Receivers share the same Multidrop wire. Therefore, each character that is transmitted on the line, is automatically received by all the Receivers. This is an inherently "confused" way to transmit data and no "Echo" procedure can assure reliable communication.

In order to solve this reliability problem, it is necessary to use standard protocols procedures.

It is important to understand that using RS485 with the DCB products without any protocol is possible. This is also the default condition whenever the RS485 is activated. However, the reliability of the communication is only assured when activating the protocol. This is done by sending the command CK1 from the host to the DCB.

Chapter 1.2.1 in the DCB Software manual explains the standard protocol used and supplied by Elmo.

4.2 Current Control

The analog part of the DBP is actually a standard amplifier that operates in current mode. However, the DCB receives continuously analog information about the current magnitude, direction and ripple. This information is processed to obtain digital control of the following features:

* Continuous current limit
* Peak current limit
* Time dependent peak current limit
* Current ripple

4.2.1 Current feedback, Current feedback multiplier (CFM) and Current loop

Three current feedbacks are obtained by measuring the voltage drop across current sensing resistors or by current transformers (when using the isolation option). These three signals are synthesized and multiplexed which result in a single voltage signal proportional to phases currents. It is then compared to the current command. The error is processed by the current amplifier to provide a voltage command to the PWM section.

Current loop control is obtained by op amp U21/A (current amplifier) and R4, C1 which form a lag-lead network for current loop. The standard amp is equipped with R4 and C1 to get optimum current response for an average motor in this power range. These components are mounted in solderless terminals.

The amplifier is equipped with a Current Feedback Multiplier (CFM). By turning DIP switch 2 (on the upper board of the power stage) to ON, the signal of the current feedback is multiplied by 2 and consequently the following changes occur:

- Current gains are multiplied by 2.
- Current monitor is divided by 2.
- Current limits are divided by 2.
- Dynamic range is improved.
- Commutation ripple is reduced.

This function should be activated whenever the rated current AND the peak current of the motor are less than 20% of the amplifier rated continuous and peak limits respectively.

Sometimes, oscillations may occur in the current loop due to the fact that the feedback gain was multiplied. This can be resolved by substituting R4 with a lower value.

4.3 Digital current limits

The servo amplifier can operate in the following voltage-current plane:

		$+V$	
-Ip			
	Ic		Ip
Intermittent	Continuous		
zone	zone	$-V$	

$$
\begin{gathered}
\text { Ic - Continuous current Ip - Peak current } \\
\text { Fig. 4.1: Voltage-Current plane }
\end{gathered}
$$

Each amplifier is factory adjusted to have this shape of voltage-current operating area with rated values of continuous and peak current limits. By using the command $C L(n)$ for the continuous and $P L(n)$ for the peak it is possible to adjust the current limits (continuous and peak independently) from the rated values down to 10% of the rated values.

4.3.1 Time dependent peak current limit

The peak current duration is a programmable parameter which is also a function of the peak amplitude and the motor operating current before the peak demand. The user defines the maximum duration of the full amplitude peak by the instruction $P D n-n$ cannot be more than 2 seconds. In addition to this definition, a digital filter is employed to ensure that the RMS value of the current will not exceed the continuous current limit. The duration of $I p$ is given by:

```
    Ip - Iop
Tp = 2.2ln ----------
    Ip - Ic
```

Iop - Actual operating current before the peak demand.
The result of this filter is that the maximum peak can last for a maximum of 2 seconds. A lower peak can last longer.

Example: A motor is driven by an DBPF-10/135 amplifier at constant speed and constant current of 5A. What is the maximum possible duration of a 20A peak ?

$$
20-5
$$

$T p=2.2 \ln -------=0.892$ seconds
20-10

4.4 Digital position and speed control

The DCB accepts motion commands via an RS232 or RS485 communication line and receives position feedback in an incremental encoder format either from an encoder or from the resolver/digital circuit. The DCB derives the closed-loop position error by comparing the command position and the feedback position. The error is processed by a digital filter to yield with an analog motor command. The analog +5 volt range motor command is then amplified by the power amplifier.

Following is a summary of all the operating modes of the DCB and a detailed discussion of each of them.

Control Modes
Holding Modes.
Start Modes
Program Mode
Termination Modes
Status reporting
Define origin modes

Control Modes

The DCB can be commanded to control the position of a motor, its torque or its velocity using three basic control modes:

- Position Mode
- Velocity Mode
- Position Follower Mode

Position Mode

In the position mode the motor will advance a specified distance and then stop. This distance can be represented as an absolute position (PA n) or as a relative distance from the current position (PR n). The motion will follow a trapezoidal or triangular profile with the acceleration (AC n) and slew velocity (SP n) set by the user.

Velocity Mode

In the velocity mode the motor will accelerate to a specified slew speed. It will hold this speed until a stop condition is received (see termination modes), or a new velocity/direction is commanded.

Position Follower

It can also control the motor as a position follower of a master encoder or a pulse and direction signals.

Holding Modes.

The holding modes describe the behavior of the system after it has stopped. There are three holding modes:

- Servo
- Motor Off

Servo Mode

In the servo mode (SV) the system maintains stopping position by using its control law to correct for any position errors.

Motor Off Mode

In the Motor Off mode is, the power bridge and the position control are shut off and there no torque is generated by the amplifier. The Motor Off mode is useful in robotics applications in the teaching mode.

Start Modes

There are three start modes to begin a move:

Direct command

A move can be initiated directly by a command from the host or a terminal.
Program
A move can be initiated by a command included in the user program.

Input condition

Another alternative is to have the move started by a conditional statement specified by the user program.

Program Mode

A set of commands can be implemented as a user program to allow for automatic and/or complex types of moves. The user may specify software variables, conditional statements, subroutines and error routines which enable enhanced motion control.

Termination Modes

A motion can be terminated in a variety of ways. In all but emergency termination modes the motor will be decelerated gradually to a stop and then will enter one of the stationary modes (Servo, or Motor Off). In a position mode move, the motion will terminate naturally upon reaching the desired final position. In all of the control modes the motion can be terminated by a command from the host. An additional means of termination is from one of the local inputs.

Activating the forward and reverse limit switch inputs can be another means of terminating a move. Upon contacting the switch, the \# routine will be activated. This is a user programmed routine that should normally include a stop command to decelerate the motor to a full stop.

There are two methods of generating an emergency stop. The first is by an abort command from the host, and the other is by the local abort input. Upon receipt of either of these commands the system will go immediately to its stationary mode.

Another "unnatural" way to terminate a motion is whenever an internal amplifier inhibit (due to one of the protections) occurs. This turns off the power stage and the motor will decelerate to a stop by friction only. There are two modes of handling the internal amplifier inhibit:

Latch Mode

The power stage is disabled and only a reset will release it.

Auto restart

The power stage inhibit will automatically be released upon clearing the cause of the inhibit.

Status Reporting

Status is available to the user in several ways.

Communication

In response to the Tell Status command (TS) the DCB sends a coded message describing the status of the amplifier.

In addition, the host may request certain information at any time. This consists of the state of the system (GN?, ZR?, PL?, KI?), the state of the local inputs (TI), the torque level (TT), the current motor position (TP), the current motor velocity (TV) and the reason for a stop condition (TC).

Refer to the DCB Software Manual for further details.

Hardware signal

Motion complete signal
This output will go to high when motion is complete.
Inhibit output
Whenever the amplifier is inhibited, this open collector output goes to low. When using Elmo's mother boards a potential free relay replaces the open collector output.

4-digit display

Whenever a fault occurs, a fault message will be displayed for easy visual information. See chapter 9.1 for a summary of all amplifier's fault indications.

Define origin modes

The origin is that location at which the absolute position of the motor equals zero. This special location may be defined in two ways. First, the user may send a command (DH) which defines the current motor position to be the origin. The alternate method is to request the $D C B$ to perform the homing sequence by commanding HM.

4.5 Operation of the shunt regulator

A shunt regulator is included in the power supply section of the DBP. The shunt regulator is a switching type, wherein dissipative elements (resistors) are switched across the DC bus, whenever the voltage reaches a predetermined level (Vr). The function of the shunt regulator is to regulate the voltage of the DC bus during the period of motor deceleration, when there is a net energy outflow from the motor to the amplifier. The amplifier handles this reverse energy just as efficiently as it provides energy to the motor, hence, most of the energy is passed through the amplifier to the power supply, where the returning energy charges the filter capacitors above their normal voltage level, as determined by the AC incoming voltage.

When the capacitors charge-up reaches the predetermined voltage level (Vr), the shunt regulator begins its regulating action. The bus is regulated to this range until regeneration ceases.

All the double Eurocard size amplifiers are equipped with two outputs for connecting an external shunt resistor , hence increasing the power dissipation capability.

SHUNT specifications

Type	Reg. Voltage $(V r)$	Internal Reg. Current (A)	External Reg. Current (A)
DBP-12/135	193	13	N/A
DBP-20/135	193	26	21
DBP-8/270	383	8	N/A
DBP-16/270	383	16	12
DBPF-12/135	193	13	N/A
DBPF-20/135	193	26	21
DBPF-30/135	193	8	12
DBPF-8/270	383	383	16
DBPF-16/270	383		12
DBPF-24/270		16	

4.6 Commutation signals format

4.7 Protective functions

All the protective functions except "Low Back-up Battery Voltage" activate an interrupt to the main processor which inhibits the power bridge and disable current flow to or from the motor. The user can interrogate the processor in order to verify the cause of the inhibit. An indication of the fault will appear on the display. The following protections are processed by the DCB:

4.7.1 Short circuit protection

The amplifier is protected against shorts between outputs, or either output to ground, or either output to the positive supply line.

4.7.2 Under/over voltage protection

Whenever the DC bus voltage is under or over the limits indicated in the technical specifications, the amplifier will be inhibited.

4.7.3 Temperature protection

Temperature sensor is mounted on the heatsink. If, for any reason, the temperature exceeds $85^{\circ} \mathrm{C}$ the amplifier will be inhibited. The amplifier will restart when the temperature drops below $80^{\circ} \mathrm{C}$. The user can always interrogate the DCB about the heatsink temperature by using the command T?.

4.7.4 Internal power supply failure

In any case that the sum of the internal power supplies is below 13 V or its difference higher than $1 V$, the amplifier will be inhibited.

4.7.5 Loss of commutation feedback

Lack of either of the commutation signals will inhibit the amplifier.

4.7.6 Low back-up Battery voltage

When the battery voltage goes below 2.4 V the DCB will send a message on the communication line and will display "BATT" on the display.

DCB COMPONENTS LAYOUT

DCB RESOLVER OPTION BLOCK DIAGRAM

RESOLVER BOARD COMPONENTS LAYOUT

5. Terminal Description

5.1 Terminals for Horizontal and Rack mounting versions

H	R	Function
1	$(32 a, c)$	Motor phase A output. With the DIN connector both pins must be connected.
2	(30a, c	Motor phase B output. With the DIN connector both pins must be connected.
3	$(28 a, c)$	Motor phase C output. With the DIN connector both pins must be connected.
4	$(26 a, c)$	AC supply-phase A. With the DIN connector both pins must be connected.
5	$(24 a, c)$	AC supply-phase B. With the DIN connector both pins must be connected.
6	$(22 a, ~ c) ~$	AC supply-phase C. With the DIN connector both pins must be connected.
7	$(20 a, c)$	DC power positive (+Vs)
8 9	$\begin{gathered} (18 a, c \\ 16 a, c) \end{gathered}$	DC power common
10	(14c)	Hall sensor A *
11	(12c)	Hall sensor B *
12	(10c)	Hall sensor C *
13	(8c)	+15VDC for Hall sensors supply.
14	(6c)	Circuit common for the Hall sensors supply (Control common).
15	(4c)	24 V common - for the fan supply only.
16	(2c)	+24VDC, 400 mA for use with brushless fan

```
* -1V < Vil < 1V ; 2V \leq Vih < 30V
```

 Source sink capability - 2mA min.
 Power Board - 6U size - Supplies terminals

H	R	FUNCTION
+VS	4ac, 2ac	External shunt resistor connection / +VS.
NC		NOT CONNECTED
SO	8ac	External shunt resistor connection.
NC		NOT CONNECTED
$\begin{aligned} & \text { POW } \\ & \text { COM } \end{aligned}$	14ac, 12ac	POWER COMMON
NC		NOT CONNECTED
AC	20ac, 18ac	AC supply-phase A. With the DIN connector all pins must be connected.
AC	26ac, 24ac	AC supply-phase B. With the DIN connector all pins must be connected.
AC	32ac, 30ac	AC supply-phase C. With the DIN connector all pins must be connected.

Power Board - 6U size - Motor terminals

H	R	FUNCTION
HC	2c	Hall sensor C *
HB	4c	Hall sensor B *
HA	6c	Hall sensor A *
-FAN	8c	24 V common - for the fan supply only
+FAN	10c	+24VDC, 400mA for use with brushless fan
MC	18ac, 16ac, 14a	Motor phase C output. With the DIN connector all pins must be connected.
MB	26c, 24ac, 22ac	Motor phase B output. With the DIN connector all pins must be connected.
MA	32ac, 30ac, 28c	Motor phase A output. With the DIN connector all pins must be connected.

```
* -1V \leq Vil < 1V ; 2V < Vih < 30V
    Source sink capability - 2mA min.
```

Control board

$\mathrm{H} \& \mathrm{R}$	Function	Remarks
1a	Output 6	*
1b	Current monitor	This analog output represents the actual current in the motor. The scale (in A / V) is: Ip / 7.5 Ip - Rated peak current of amplifier.
2a	Output 7	*
2b	Velocity / current mode selection	When input is left open (low level) the analog part of the amplifier is working in current mode. when a high level signal is applied ($>2 \mathrm{~V}$), the analog part of the amplifier is working as a high gain velocity amplifier.**
3 a	Output 8	*
36	Motion command ($\pm 5 \mathrm{~V}$)	This analog output represents the current command from the position loop to the power amplifier. It is useful for monitoring the position loop response.
4 a	Circuit common	
4b	Circuit common	
5a	Fast output 9	*
5b	+5V output	There are several +5 V terminals. The accumulative external load should not exceed 200 mA .
6a	Fast output 10	*
6b	Circuit common	
7 a	Motion Complete	This output will go to high when motion is complete.
7b	+15V output	100 mA .
8 a	Inhibit output	Whenever the amplifier is inhibited, this open collector output goes low.
8b	-15V output	100 mA .

[^1]Control board - cont.

H \& R	Function	Remarks
9a	Forward limit switch	This committed input activates the \#[subroutine.
9 b	positive input of a differential amplifier.	See Appendix C.
10a	Reverse limit switch	This committed input activates the \#[subroutine.*
10b	Negative input of a differential amplifier.	See Appendix C.
11a	Circuit common	
11b	Output of a differential amplifier.	See Appendix C.
12a	Home switch	*
12b	Tachogenerator output/input	When using the resolver option this output is the velocity monitor with a scale of 8 V for maximum speed. See 7.3.
13a	Abort input	This input must be connected to high level voltage to enable the amplifier.*
13b	Output 1	**
14a	Circuit common	
14b	Output 2	**
15a	Fast input 6	This fast response input can capture events with a duration of less than $10 \mu \mathrm{~s}$. An event is defined as an input voltage transition from low to high. *
15b	Output 3	**
16a	Fast input 7	Same function as Fast Input 6 (15a). *
16b	Output 4	*
17a	Reset input	*
17b	Output 5	**

```
* Vil<1V, Vih>2.4V, Maximum input voltage: +30VDC
** Vol<0.4V, Voh>4V, Output level: 0-5V, max output current +5mA
```

Control board - cont.

H \& R	Function	Remarks
18a	Analog input	This input is monitored by the main $\mu \mathrm{P}$. When $\|V i\|$ $\leq 5 \mathrm{~V}, \mathrm{R} 1=470 \mathrm{ohm}$ should be inserted. When $\|\mathrm{Vi}\|>5 \mathrm{~V}$, R1 (Kohm) $=2 \mathrm{Vi}-10$ should be inserted. The $\mu \mathrm{P}$ always reads a range of +5 V .
18b	Input 1	*
19a	+5v output	There are several +5 V terminals. The accumulative external load should not exceed 200 mA .
19b	Input 2	*
20a	Circuit common	
20b	Input 3	*
21a	Auxiliary encoder input (Ay) or pulse input for Pulse and Direction mode.	
21b	Input 4	*
22a	Auxiliary encoder complementary input (Ay) or complementary Pulse and Direction mode	
22b	Input 5 or Index Input.	If a homing sequence is required, the Index Input must be connected to Input 5 *
23a	Auxiliary encoder input (By) or Direction input for Pulse and Direction mode	
23b	Resolver reference	Max. voltage: 20Vptp or 7 Vrms Max current: 80mA Max frequency: 20 KHz

[^2]Control board - cont.

H \& R	Function	Remarks
24a	Auxiliary encoder complementary input (By) or Complementary Direction input for Pulse and Direction mode	
24b	Resolver reference common.	The reference voltage to the resolver must be taken from terminals 23b and 24b only.
25a	+5V output	There are several +5 V terminals. The accumulative external load should not exceed 200 mA .
25b	Cosine signal input.	See 7.3
26a	Circuit common	For the auxiliary encoder
26b	Cosine signal common.	See 7.3
$27 a$	Channel B input	
27b	Sine signal input.	See 7.3
28a	Channel -B input	
28b	Sine signal common	See 7.3
29a	Channel A input	
29b	Circuit common	For the main encoder
30a	Channel -A input	
30b	Index output	For resolver option only.
31a	-Index input	
31b	Channel B output	
32a	Index input	
32b	Channel A output	

```
Remark: In the following paragraphs the terminals will be related to all the
mounting types as in the following sample:
H/R-2a,E-J4/13.
```


TERMINALS LAYOUT

CONTROL BOARD

DBP - PANEL (H) MOUNTING TYPE EUROCARD SIZE TYPES

DBP - PANEL (H) MOUNTING TYPE DOUBLE EUROCARD SIZE TYPE

DBP-6U RACK TYPE CONNECTORS

5.2 Mother Boards terminals (MBA-DBP/3U and MBA-DBP/6U)

Use: For all DBP amplifiers (3U/6U size) with Resolver or optical encoder feedback. The encoder outputs are driven by line drivers to improve noise immunity.

Termination: Screw type terminals for the power and D-type connectors for the signals.

POWER TERMINALS FOR MBA-DBP/3U

H	R	Function
1	$(32 a, c)$	Motor phase A output. With the DIN connector both pins must be connected.
2	(30a, c	Motor phase B output. With the DIN connector both pins must be connected.
3	$(28 a, ~ c) ~$	Motor phase C output. With the DIN connector both pins must be connected.
4	$(26 a, c)$	AC supply-phase A. With the DIN connector both pins must be connected.
5	($24 a, c$)	AC supply-phase B. With the DIN connector both pins must be connected.
6	$(22 a, ~ c) ~$	AC supply-phase C. With the DIN connector both pins must be connected.
7	$(20 a, ~ c) ~$	DC power positive (+Vs)
8 9	$\begin{aligned} & (18 a, c \\ & 16 a, c) \end{aligned}$	DC power common
10		Ground, this terminal is connecred through a screw to the rack chassis.
15	(4C)	24 V common - for the fan supply only.
16	(2c)	+24VDC, 400 mA for use with brushless fan

POWER TERMINALS FOR MBA-DBP / 6U

Terminal	Function
M1	Motor phase A output.
M2	Motor phase B output.
M3	Motor phase C output.
GND	Ground. This terminal is connected to the ENC chassis.
AC	AC supply-phase A.
AC	AC supply-phase B.
AC	AC supply-phase C.
COM	DC power common
VS	DC power positive
SO	Auxiliary shunt output, for external shunt resistor.

Signals connector - J1 (MBA-DBP/3U and MBA-DBP/6U)

Pin	Function	Remarks
$\mathbf{1}$	Channel A input	
$\mathbf{2}$	Channel -A input	
$\mathbf{3}$	Channel B input	
$\mathbf{4}$	Channel -B input	There are several +5V pins. The accumulative $\mathbf{5}$
$\mathbf{6}$	-Index input	Index input
$\mathbf{7}$	+5V output	There are several +15V pins. The accumulative
$\mathbf{8}$	+15v output	external load should not exceed 100mA.
$\mathbf{9}$	Circuit common	

Signals connector - J2 (MBA-DBP/3U and MBA-DBP/6U)

Pin	Function	Remarks
1	Resolver reference	Max. voltage: 20Vptp or 7 Vrms Max current: 80mA Max frequency: 20KHz
2	Resolver reference common.	The reference voltage to the resolver must be taken from pins 1 and 2 only.
3	Cosine signal input.	See 7.3
4	Cosine signal common.	See 7.3
5	Sine signal input.	See 7.3
6	Sine signal common	See 7.3
7	+15V output	There are several +15 V pins. The accumulative external load should not exceed 100 mA .
8	-15V output	There are several -15 V pins. The accumulative external load should not exceed 100 mA .
9	Circuit common	

Signals connector - J3 (MBA-DBP/3U and MBA-DBP/6U)

Pin	Function	Remarks
1	positive input of a differential amplifier.	See Appendix C.
2	Negative input of a differential amplifier.	See Appendix C.
3	differential amplifier.	See Appendix C.
4	Circuit common	
5	Analog input	This input is monitored by the main $\mu \mathrm{P}$. When $\|\mathrm{Vi}\|$ $\leq 5 \mathrm{~V}, \mathrm{R} 1=470$ ohm should be inserted. When $\|\mathrm{Vi}\|>$ 5V, R1 (Kohm) $=2 \mathrm{Vi}-10$ should be inserted. The $\mu \mathrm{P}$ always reads a range of +5 V .
6	Circuit common	
7	Circuit common	
8	Current monitor	This analog output represents the actual current in the motor. The scale (in A / V) is: Ip / 7.5 Ip - Rated peak current of amplifier.
9	Circuit common	
10	+5V output	There are several +5 V pins. The accumulative external load should not exceed 200 mA .
11	+15V output	There are several +15 V pins. The accumulative external load should not exceed 100 mA .
12	-15v output	There are several -15 V pins. The accumulative external load should not exceed 100 mA .
13	Channel B output	
14	Channel A output	
15	Index output	For resolver option only.
16	Not connected	
17	Inhibit output	Relay contact (potential free). The relay contact is closed whenever the amplifier is enabled. Contact rating: 0.5A, 200V, 10W.

Signals connector - J3 - cont.

Pin	Function	Remarks
18	Inhibit output	Relay contact (potential free). The relay contact is closed whenever the amplifier is enabled. Contact rating: 0.5A, 200V, 10W.
19		This analog output represents the current command from the position loop to the power amplifier. It is useful for monitoring the position loop response.
20	Circuit common	
21	Reset input	*
22	Circuit common	
23	Tachogenerator output/input	When using the resolver option this output is the velocity monitor with a scale of 8 V for maximum speed. See 7.3.
24	Circuit common	
25	Velocity / current mode selection	When input is left open (low level) the analog part of the amplifier is working in current mode. when a high level signal is applied ($>2 \mathrm{~V}$), the analog part of the amplifier is working as a high gain velocity amplifier. *
26	Not connected	

Signals connector - J4 (MBA-DBP/3U and MBA-DBP/6U)

Pin	Function
1	Input 1
2	Input 2
3	Circuit common
4	Input 3
5	Input 4

[^3]Signals connector - J4 - cont.

Pin	Function	Remarks
6	Input 5 or Index Input.	If a homing sequence is required, the Index Input must be connected to Input 5.
7	Circuit common	
8	Fast input 6	This fast response input can capture events with a duration of less than $10 \mu \mathrm{~s}$. An event is defined as an input voltage transition from low to high.
9	Fast input 7	Same function as Fast Input 6 (8).
10	Circuit common	
11	+5V output	There are several +5 V pins. The accumulative external load should not exceed 200 mA .
12	+5V output	There are several +5 V pins. The accumulative external load should not exceed 200 mA .
13	Output 7	**
14	+5V output	There are several +5 V pins. The accumulative external load should not exceed 200 mA .
15	Output 1	**
16	Output 2	**
17	Output 3	**
18	Circuit common	
19	Output 4	**
20	Output 5	**
21	Output 6	**
22	Circuit common	
23	Output 9	**

```
* Vil<1V, Vih>2.4V, Maximum input voltage: +30VDC
** Vol<0.4V, Voh>4V, Output level: 0-5V, max output current +5mA
```

Signals connector - J4 - cont.

Pin	Function	Remarks		
24	Output 10	$*$		
25	Motion Complete	This output will go to high when motion is complete. $*$		
26	Output 8	\star		

Signals connector - J6 (MBA-DBP/3U and MBA-DBP/6U)

Pin	Function	Remarks
1	Auxiliary encoder complementary input (By) or Complementary Direction input for Pulse and Direction mode	
2	Auxiliary encoder input (By) or Direction input for Pulse and Direction mode	
3	Auxiliary encoder input (Ay) or pulse input for Pulse and Direction mode.	
4	Auxiliary encoder complementary input (Ay) or complementary Pulse and Direction mode	

[^4]Signals connector - J6 - cont.

Pin	Function	Remarks
5	Auxiliary encoder index input	
6	+5V output	There are several +5 V pins. The accumulative external load should not exceed 200 mA .
7	+15V output	There are several +15 V pins. The accumulative external load should not exceed 100 mA .
8	Circuit common	
9	Home switch	*
10	+5V output	There are several +5 V pins. The accumulative external load should not exceed 200 mA .
11	Abort input	This input must be connected to high level voltage to enable the amplifier. *
12	+5V output	200 mA
13	Forward limit switch	This committed input activates the \#[subroutine.
14	Reverse limit switch	This committed input activates the \#[subroutine.
15	Circuit common	

J1A, FAN TERMINALS - (MBA-DBP/6U ONLY)

$\mathbf{1 0}$	24VDC common - fan only.
$\mathbf{1 1}$	+24VDC isolated supply for fan (max. 400mA)

[^5]
Signals connector - J8 (MBA-DBP/3U and MBA-DBP/6U)

1	Channel A output	Main encoder buffered output ($20 \mathrm{~mA}, 0-5 \mathrm{~V}$)
2	Channel -A output	Main encoder buffered output ($20 \mathrm{~mA}, 0-5 \mathrm{~V}$)
3	Channel B output	Main encoder buffered output ($20 \mathrm{~mA}, 0-5 \mathrm{~V}$)
4	Channel -B output	Main encoder buffered output ($20 \mathrm{~mA}, 0-5 \mathrm{~V}$)
5	Encoder index output	For resolver option only buffered output (20mA, 0-5V)
6	Encoder -index output	For resolver option only buffered output (20mA, 0-5V)
7	Circuit common	
8	Circuit common	
9	Circuit common	
10	Hall A	*
11	Hall B	*
12	Hall C	*
13	+15V	There are several +15 V pins. The accumulative external load should not exceed 100 mA .
14	+5V output	There are several +5 V pins. The accumulative external load should not exceed 200 mA .
15	Circuit common	

Remark: In the following paragraphs the terminals will be related to all the mounting types as in the following sample:

H/R-2a, E-J4/13.

```
* -1V < Vil < 1V ; 2V \leq Vih < 30V
```

 Source sink capability - 2 mA min.

MBA - DBP/3U

MBA-DBP/6U

5.3 Terminals for DBP mounted in ENCD.

POWER TERMINALS FOR MBA-DBP/3UE (3U size)
Terminal Function $\mathbf{1}$ Motor phase A output. $\mathbf{2}$ Motor phase B output. $\mathbf{3}$ Motor phase C output. $\mathbf{4}$ AC supply-phase A. $\mathbf{5}$ AC supply-phase B. $\mathbf{6}$ AC supply-phase C. $\mathbf{7}$ DC power positive (+Vs) $\mathbf{8 , 9}$ DC power common $\mathbf{1 0}$ Ground $\mathbf{1 1}$ Ground

POWER TERMINALS FOR MBA-DBP/6UE (6U size)

Terminal	Function
MA	Motor phase A output.
MB	Motor phase B output.
MC	Motor phase C output.
GND	Ground
AC	AC supply-phase A.
AC	AC supply-phase B.
AC	AC supply-phase C.
POW COM	POWER COMMON
+VS	External shunt resistor connection $/+$ VS.
SO	External shunt resistor connection.

Attention:
DC power commons, control commons and fan common are floating with respect to each other. Do not short them unless specified.
For isolated amplifiers connecting control common to ground is accomplished by inserting R2 (short resistor) on the mother board.

Signals connector - J1 (MBA-DBP/3UE and MBA-DBP/6UE)

Pin	Function
$\mathbf{1}$	Channel A input
$\mathbf{2}$	Channel -A input
$\mathbf{3}$	Channel B input
$\mathbf{4}$	Channel -B input
$\mathbf{5}$	-Index input
$\mathbf{6}$	Index input
$\mathbf{7}$	+5V output
$\mathbf{8}$	+15v output
$\mathbf{9}$	Circuit common

Signals connector - J2 (MBA-DBP/3UE and MBA-DBP/6UE)

Pin	Function	Remarks
1	Resolver reference	Max. voltage: 20 Vptp or 7 Vrms Max current: 80mA Max frequency: 20 KHz
2	Resolver reference common.	The reference voltage to the resolver must be taken from pins 1 and 2 only.
3	Cosine signal input.	See 7.3
4	Cosine signal common.	See 7.3
5	Sine signal input.	See 7.3
6	Sine signal common	See 7.3
7	+15V output	There are several +15 V pins. The accumulative external load should not exceed 100 mA .
8	-15V output	There are several -15 V pins. The accumulative external load should not exceed 100 mA .
9	Circuit common	

Signals connector - J3 (MBA-DBP/3UE and MBA-DBP/6UE)

Pin	Function	Remarks
1	positive input of a differential amplifier.	See Appendix C.
2	Negative input of a differential amplifier.	See Appendix C.
3	differential amplifier.	See Appendix C.
4	Circuit common	
5	Analog input	This input is monitored by the main $\mu \mathrm{P}$. When $\|\mathrm{Vi}\|$ $\leq 5 \mathrm{~V}, \mathrm{R} 1=470 \mathrm{ohm}$ should be inserted. When $\|\mathrm{Vi}\|>$ 5V, R1 (Kohm) $=2 \mathrm{Vi}-10$ should be inserted. The $\mu \mathrm{P}$ always reads a range of +5 V .
6	Circuit common	
7	Circuit common	
8	Current monitor	This analog output represents the actual current in the motor. The scale (in A / V) is: Ip / 7.5 Ip - Rated peak current of amplifier.
9	Circuit common	
10	+5V output	There are several +5 V pins. The accumulative external load should not exceed 200 mA .
11	+15V output	There are several +15 V pins. The accumulative external load should not exceed 100 mA .
12	-15V output	There are several -15 V pins. The accumulative external load should not exceed 100 mA .
13	Channel B output	
14	Channel A output	
15	Index output	For resolver option only.
16	Not connected	
17	Inhibit output	Relay contact (potential free). The relay contact is closed whenever the amplifier is enabled. Contact rating: 0.5A, 200V, 10W.

Signals connector - J3 - cont.

Pin	Function	Remarks
18	Inhibit output	Relay contact (potential free). The relay contact is closed whenever the amplifier is enabled. Contact rating: 0.5A, 200V, 10W.
19	Motion command ($\pm 5 \mathrm{~V}$)	This analog output represents the current command from the position loop to the power amplifier. It is useful for monitoring the position loop response.
20	Circuit common	
21	Reset input	*
22	Circuit common	
23	Tachogenerator output/input	When using the resolver option this output is the velocity monitor with a scale of 8 V for maximum speed. See 7.3.
24	Circuit common	
25	Velocity / current mode selection	When input is left open (low level) the analog part of the amplifier is working in current mode. when a high level signal is applied ($>2 \mathrm{~V}$), the analog part of the amplifier is working as a high gain velocity amplifier. *

Signals connector - J4 (MBA-DBP/3UE and MBA-DBP/6UE)

Pin	Function	Remarks
1	Input 1	\star
2	Input 2	\star
3	Circuit common	
4	Input 3	\star
5	Input 4	\star

[^6]Signals connector - J4 - cont.

Pin	Function	Remarks
6	Input 5 or Index Input.	If a homing sequence is required, the Index Input must be connected to Input 5.
7	Circuit common	
8	Fast input 6	This fast response input can capture events with a duration of less than $10 \mu \mathrm{~s}$. An event is defined as an input voltage transition from low to high.
9	Fast input 7	Same function as Fast Input 6 (8).
10	Circuit common	
11	+5V output	There are several +5 V pins. The accumulative external load should not exceed 200 mA .
12	+5V output	There are several +5 V pins. The accumulative external load should not exceed 200 mA .
13	Output 7	**
14	+5V output	There are several +5 V pins. The accumulative external load should not exceed 200 mA .
15	Output 1	**
16	Output 2	**
17	Output 3	**
18	Circuit common	
19	Output 4	**
20	Output 5	**
21	Output 6	**
22	Output 8	**
23	Output 9	**

```
* Vil<1V, Vih>2.4V, Maximum input voltage: +30VDC
** Vol<0.4V, Voh>4V, Output level: 0-5V, max output current }\pm5m
```

Signals connector - J4 - cont.

Pin	Function	Remarks		
24	Output 10	\star		
25	Motion Complete	This output will go to high when motion complete. ${ }^{*}$		

Signals connector - J6 (MBA-DBP/3UE and MBA-DBP/6UE)

Pin	Function	Remarks
1	Auxiliary encoder complementary input (By) or Complementary Direction input for Pulse and Direction mode	
2	Auxiliary encoder input (By) or Direction input for Pulse and Direction mode	
3	Auxiliary encoder input (Ay) or pulse input for Pulse and Direction mode.	
4	Auxiliary encoder complementary input (Ay) or complementary Pulse and Direction mode	

[^7]Signals connector - J6 - cont.

Pin	Function	Remarks
5	Auxiliary encoder index input	
6	+5V output	There are several +5 V pins. The accumulative external load should not exceed 200 mA .
7	+15V output	There are several +15 V pins. The accumulative external load should not exceed 100 mA .
8	Circuit common	
9	Home switch	*
10	+5V output	There are several +5 V pins. The accumulative external load should not exceed 200 mA .
11	Abort input	This input must be connected to high level voltage to enable the amplifier. *
12	+5V output	200 mA
13	Forward limit switch	This committed input activates the \#[subroutine.
14	Reverse limit switch	This committed input activates the \#[subroutine.
15	Circuit common	

J1A, FAN TERMINALS - (MBA-DBP/3UE and MBA-DBP/6UE)

10	24VDC common - fan only.
$\mathbf{1 1}$	+24VDC isolated supply for fan (max. 400mA)

* Vil<1V, Vih>2.4V, Maximum input voltage: +30VDC

Signals connector - J8 (MBA-DBP/3UE and MBA-DBP/6UE)

1	Channel A output	Main encoder buffered output ($20 \mathrm{~mA}, 0-5 \mathrm{~V}$)
2	Channel -A output	Main encoder buffered output ($20 \mathrm{~mA}, 0-5 \mathrm{~V}$)
3	Channel B output	Main encoder buffered output ($20 \mathrm{~mA}, 0-5 \mathrm{~V}$)
4	Channel -B output	Main encoder buffered output ($20 \mathrm{~mA}, 0-5 \mathrm{~V}$)
5	Encoder index output	For resolver option only buffered output (20mA, 0-5V)
6	Encoder -index output	For resolver option only buffered output (20mA, 0-5V)
7	Circuit common	
8	Circuit common	
9	Circuit common	
10	Hall A	*
11	Hall B	*
12	Hall C	*
13	+15V	There are several +15 V pins. The accumulative external load should not exceed 100 mA .
14	+5V output	There are several +5 V pins. The accumulative external load should not exceed 200 mA .
15	Circuit common	

Remark: In the following paragraphs the terminals will be related to all the mounting types as in the following sample:

H/R-2a, E-J4/13.

```
* -1V < Vil < 1V ; 2V < Vih < 30V
```

 Source sink capability - 2mA min.

MBA-DBP/3UE

5.4 Communication Port Connector

The serial communication is available via a 9 pins D connector (Jc) with the following pin assignment:

RS232

Pin	Function
2	Receive
3	Transmit
5	Common

When using an IBM XT as an host, pins 4 and 5 should be connected together on the 25 pins D connector (computer side). When using an IBM AT as an host, pins 7 and 8 should be connected together on the 9 pins D connector (computer side).

$\underline{R S 485}$

Pin	Function
5	Common
6,7	T/R -
8,9	T/R +

6. Installation procedures

6.1 Mounting

The DBP series dissipates its heat by natural convection except DBPF types which are fan cooled. For optimum dissipation the amplifiers have to be mounted with the fins in vertical position.

6.2 Wiring

Proper wiring, grounding and shielding techniques are important in obtaining proper servo operation and performance. Incorrect wiring, grounding or shielding can cause erratic servo performance or even a complete lack of operation.
a) Keep motor wires as far as possible from the signal level wiring (feedback signals, control signals, etc.).
b) If additional inductors (chokes) are required, keep the wires between the amplifier and the chokes as short as possible.
c) Minimize lead lengths as much as is practical. Although the amplifier is protected against long (inductive) supply wires it is recommended to keep the leads as short as possible.
d) Use twisted and shielded wires for connecting all signals (command and feedback). Avoid running these leads in close proximity to power leads or other sources of EMI noise.
e) Use a 4 wires twisted and shielded cable for the motor connection.
f) Shield must be connected at one end only to avoid ground loops.
g) All grounded components should be tied together at a single point (star connection). This point should then be tied with a single conductor to an earth ground point.
h) After wiring is completed, carefully inspect all conditions to ensure tightness, good solder joint etc.

6.3 Load inductance

The total load inductance must be sufficient to keep the current ripple within the limits - 50\% of the adjusted continuous current limit. The current ripple (Ir) can be calculated by using the following equation:

$$
0.5 \mathrm{x} \mathrm{Vs}
$$

$$
\text { Ir }=\text {---------- }
$$

f x L

L - load inductance in mH.
Vs - Voltage of the DC supply in Volts.
f - Frequency in KHz .

If motor inductance does not exceed this value, 3 chokes should be added (to each motor phase) summing together the required inductance

Lch $=\mathrm{L}-\mathrm{Lp}$
Lch - Choke inductance
Lp - Total inductance between two phases (in Y connection it is the sum of two phases).

6.4 AC power supply

AC power supply can be at any voltage in the range defined within the technical specifications. It must have the capability to deliver power to the amplifier (including peak power), without significant voltage drops. Any
voltage below the minimum or above the maximum will disable the amplifier.
The recommended AC voltage are:

$1.2 \times$ VAC(min) < VAC < $0.9 \times$ VAC(max)

Note - Single phase connection:

When using a single phase supply, voltage drop due to loading is expected. The magnitude of the voltage drop depends on the load current, motor velocity, stiffness of the power source and total bus capacitance. It is recommended not to use single phase connection for output current higher than 20A.

For 3U size amplifiers it is recommended to add external capacitance as follows:

For 135 V units up to $1200 \mu \mathrm{~F}$
For 270 V units up to $600 \mu \mathrm{~F}$

6.5 Wiring diagrams

6.5.1 Motor's windings

Minimum acceptance

Acceptable for most applications

Optimum wiring, minimum RFI

6.5.2 AC power wiring
 AC POWER WIRING

NON-ISOLATED AC SUPPLIES:

A) DIRECTLY TO THE MAIN B) USING AUTOTRANSFORMER

B. External fuses are needed for 3 U size only

Guide lines for connecting non-isolated AC supplies

```
Ground:
Control common
Motor chassis
Amplifier's heatsink
Do not ground:
Power common
(The power common is a hot point and any grounding will cause an input
rectifier failure).
```

Caution:

- If source of motor command is grounded, use amplifier's differential input.
Otherwise, a ground loop is created.

ISOLATED AC SUPPLIES

A. Extenal fuses are needed for 3 U size only

Guide lines for connecting an Isolated amplifier with an isolating power transformer

Ground:

DC power common
Control common
Motor chassis
Amplifier's heat sink.

Caution:

```
- If source of motor command is grounded, use amplifier's differential input.
    Otherwise, a ground loop is created.
```


A. External fuses are needed for 3 U size only

Guide lines for connecting a non isolated amplifier with an isolating power transformer

Ground:

```
DC power common
```

Motor chassis

Amplifier's heat sink

Do not ground:
Control common - It is internally connected to the power common. Grounding the control common will create a ground loop.

Caution:

- If source of motor command is grounded, use amplifier's differential input. Otherwise, a ground loop is created.

DIRECT CONNECTION TO

THE THREE PHASE MAINS

NOTE: DC POWER TERMINALS ARE CONNECTED IF SINGLE PHASE IS USED OR IF SHUNT CURRENT HAS TO BE INCREASED
A. External fuses are needed for 3U size only

CONNECTING MORE THAN ONE DBP

TRANSFORMER

CONNECTING MORE THAN ONE DBP

ISOLATING
TRANSFORMER

NOTE: DC POWER TERMINALS ARE CONNECTED IF SINGLE PHASE

IS USED OR IF SHUNT CURRENT
HAS TO BE INCREASED
A. External fuses are needed for 3U size only

CONNECTING MORE THAN ONE DBP

See chapter 6.4 for details

All rules about supply connections described in the previous pages are also valid for multi-IBP and/or single phase connection.

For 135V types the standard value of

Rex is 9.1 ohm/225Watt

For 270V types the standard value of
Rex is 33ohm/225Watt

CONNECTING THE EXTERNAL SHUNT RESISTOR DOUBLE EUROCARD SIZE ONLY

6.5.3 Hall sensors wiring

HALL SENSORES CONNECTION

REMARK:

RS232 COMMUNICATION

NOTE:

SHIELDING MUST BE CONNECTED AT COMPUTER END ONLY

SYMBOLS:

RS 485 COMMUNICATION

NOTES:

1. SHIELDING MUST BE CONNECTED AT COMPUTER END ONLY
2. PIN No. 1 TRANSMIT/RECEIVE CONTROL
3. PIN No. $4+5 \mathrm{~V}$
sYMBOLS:

6.5.6 Main encoder wiring

NOTES:

1. PIN No $7=+15 \mathrm{~V}$
2. PIN No $8=-15 \mathrm{~V}$
3. PIN 9 AND THE METAL FRAME OF J2 ARE INTENALLY CONNECTED TO THE DCB COMMON. THE SHIELDINGS OF ALL THE PAIRS SHOULD BE CONNECTED EITHER TO J2 PIN 9 OR TO THE FRAME OF J2.

SYMBOLS:

6.5.8 Auxiliary encoder wiring

6.5.9 Pulse/Direction signals wiring

DIFFERENTIAL PULSE \& DIRECTION
J6 INPUT CONNECTION

NOTES:
1.THE METAL FRAME OF J6 AND PIN 8 ARE INTERNALLY CONNECTED TO THE DCB COMMON. THE SHIELDING SHOULD BE CONNECTED EITHER TO J6 PIN 8 OR TO THE METAL FRAME OF J6.

SYMBOLS:

7. Start - Up Procedures

7.1 Common procedures for all amplifiers types

7.1.1 Commutation signals format

Select the position of DIP switch 1 on the upper board of the power stage according to the commutation signal format the motor has.

DS1 positions:	ON (down) : 30°	OFF (up) : 60°

For all Resolver versions it should be 60°.

7.1.2 CFM function

Select the position of DIP switch 2 on the upper board of the power stage according to the motor's rated current. If it is less than 20% of the amplifier's rated current select:

```
DS2 to ON (down)
```

Otherwise,
DS2 to OFF (up) - No CFM
7.1.3 Abort logic

Make sure that the Abort input is connected to a High (logic) voltage source.

7.1.4 Setting the auxiliary position input format

This step is valid only for those applications that need to use the auxiliary position input. You may skip this step if you do not use it.

When using an Optical encoder

Set DS 7 to OFF

When a the encoder has differential outputs:

```
Set DS 4 and 5 to OFF
```

Otherwise they should be ON.

When using Pulse and Direction signals
\square
Set DS 7 to ON

7.1.5 Selecting the communication bus

Select the desired communication bus as follows:

```
For RS232: Set DS9 to OFF
For RS485: Set DS9 to ON
```


7.1.6 Preparing the automatic baud rate selection

The DCB baud rate will automatically match the host baud rate when DS1 is set to ON.

```
Set DS1 to ON
```


7.2 Setting the main optical encoder format

When a differential encoder is used:
\square
Set DS 2,3,6 to OFF

Otherwise they should be ON.

7.3 Setting the R/D circuit

\square
Set DS 2,3,6 to ON

The Resolver interface circuit consists of three basic blocks:
R/D converter
The R/D conversion is done by a variable resolution, monolithic converter type 2 S82 of Analog Devices. It accepts two signals from the Resolver (sine and cos.) and converts them into binary position data bits. The resolution of the position bits is user selectable 10, 12,14 and 16 (only for standard encoder resolution). In addition, the R / D creates a signal that is proportional to the Resolver velocity. This signal is being used as a velocity feedback.

EPROM
The EPROM creates "Hall" signals by mapping the position data bits accepted from R/D into suitable Hall signals to operate a specific brushless motor. In addition, the encoder index (marker) signal is also produced from the EPROM. The EPROM is designated as follows:

[^8]
Oscillator

Creates sinusoidal waveform signal to excite the primary of the Resolver.

Oscillator Frequency/Amplitude Selection (R228,R233)

The frequency (fr) and amplitude (Vr) needed to excite the Resolver are taken from the Resolver data sheet.

Selecting the frequency:
R228 = 110/fr (Kohm)
$0.1 \mathrm{KHz}<\mathrm{fr}(\mathrm{KHz})<20 \mathrm{KHz}$

Selecting the amplitude:
Pay attention that the RMS amplitude does not exceed 7Vrms or that the peak-to-peak (ptp) value is within the range of $2 \mathrm{~V} \leq \operatorname{Vrptp} \leq 20 \mathrm{~V}$. For Vr in peak-to-peak value:
R233 $=6 /($ Vr -2$) \quad$ (Kohm)

For Vr in RMS value:

$$
\mathrm{R} 233=6 /(2.82 \mathrm{Vr}-2) \quad \text { (Kohm) }
$$

Reference Voltage level to R/D (R192)
In order to adjust the reference voltage input level to 2Vrms, select R192 as follows:

$$
\mathrm{R} 192=50 \mathrm{x} \quad\left(\mathrm{Vr}_{\mathrm{rms}}-2\right) \quad \text { (Kohm) }
$$

For Vrrms $<2 \mathrm{~V}$, install $\mathrm{R} 192=100$ ohm.

Signal input level (R193,R194)
The R/D inputs (Vin $\mathrm{rms}^{\text {) }}$ are adjusted to the sin/cos. Resolver outputs by:

```
Resolver output \(=\) Vin rms \(=\) Vrrms \(x\) Transformation ratio
```

```
R193 = R194 = Vinrms - 2 - Rstator
(Kohm)
```

($\mathrm{R}_{\text {stator }}$ in Kohm).

```
When Vin
The standard R/D converter will not operate for Vin rms<1.8V. Consult factory
for OEM applications.
```

Velocity Signal
The tracking converter technique generates an internal signal at the output of
the integrator that is proportional to the rate of change of the input angle.
This dc analog output (velocity signal) is buffered and represented at terminal
H/R-12b, E-J3/23. Max output voltage is $\pm 8 \mathrm{~V}$.

This velocity signal can be internally connected to the summing junction of the error amplifier by inserting R7 - see Appendix B for more details. However, the standard procedure does not require closing the velocity loop.

Select maximum actual velocity of the application and calculate the maximum tracking rate T of the Resolver as follows:

```
T = rpm x Q / 120
```

T unit is rps: Resolver electrical revolution per second
Q - number of poles of Resolver ;
rpm - mechanical revolution per minute.
Selecting the Resolution

The resolution can be selected to be $10,12,14$ or 16 bits by use of DIP switches 13 and 14. When selecting the resolution the rps limits should not be exceeded:

```
10 bit = 1040 rps
12 bit = 260 rps
14 bit = 65 rps
16 bit = 16.5rps
```

Resolution	DS13	DS14
10	ON	ON
12	ON	OFF
14	OFF	ON
16	OFF	OFF

Note:

- Each resolution change must be followed by new components selection procedure.
- When changing resolution under dynamic conditions, a period of uncertainty will exist before position and velocity data is valid.

Encoder resolution
In the STD mode (DS12 OFF), the encoder signals A, B are created by the EPLD and can have only the following basic resolutions (for 2 pole Resolver): 256 for 10 bits

1024 for 12 bits
4096 for 14 and 16 bits
When the Resolver is more than 2 poles, the resolution for one shaft rotation will be:

$$
\operatorname{Er}=\mathrm{QxS} / 8
$$

Q = number of Resolver poles ;
$S=$ resolution of converter ($2^{10}, 2^{12}$, or 2^{14})
When different encoder resolution is needed the encoder signals are generated by the EPROM and the R/D resolution is no longer user selectable. This option requires

- DS12 at ON
- Special EPROM which is programmed for this resolution.

HF Filter (R195, R196, C61, C62)
The function of the $H F$ filter is to reduce the amount of noise present on the signal inputs to the 2582 , reaching the Phase Sensitive Detector and affecting the outputs. Values should be chosen so that

```
15Kohm < R195=R196 < 30Kohm
```

```
    \(160 \times 10^{3}\)
C61 = C62 = -------------
    ( pF )
    R195 x fr
```

fr = Reference frequency in KHz
R195 in Kohm

This filter gives an attenuation of 3 times at the input to the phase sensitive detector.

AC Coupling of Reference Input (C60)
Select C 60 so that there is no significant phase shift at the reference frequency. That is,

R192 in Kohm

If Rx yields less than 50K, install a value of $R x=50 \mathrm{~K}$ in the C 60 equation. Maximum Tracking Rate (R201)

The VCO input resistor R 201 sets the maximum tracking rate of the converter and hence the velocity scaling as at the maximum tracking rate, the velocity output will be 8 V .

Decide on your required maximum tracking rate, "T" , in revolutions per second. Note that "T" must not exceed the specified maximum tracking rate or $1 / 16$ of the reference frequency.

```
R201 = 5.92 < 10 7 / T x p (Kohm)
```

```
where p = bit per rev
    = 1,024 for 10 bits resolution
    = 4,096 for 12 bits
    = 16,384 for 14 bits
    = 65,536 for 16 bits
```

Closed Loop Bandwidth Selection (C67, C68, R200)
a. Choose the Closed Loop 3 dB Bandwidth (f_{bw}) required ensuring that

$$
\mathrm{f}_{\text {ref }}>10 \times \mathrm{f}_{\mathrm{bw}}
$$

Recommended bandwidth values:
250 Hz for 3 KHz
300 Hz for 5 KHz
500 Hz for 10 KHz
b. Select C67 so that

$$
\begin{gathered}
2.5 \times 10^{9} \\
\mathrm{C} 67=---------- \\
\mathrm{R} 201 \times \mathrm{f}_{\mathrm{bw}}^{2}
\end{gathered}
$$

with R201 in Kohm and $\mathrm{f}_{\text {bw }}$ in Hz as selected above.
c. C68 is given by
\square
d. R200 is given by

```
    127\times107
R200 = -------------
    (Kohm)
    f
```

$\mathrm{f}_{\text {bw }}$ in $\mathrm{Hz}, \mathrm{C} 68$ in pF
R200 value should be at least three times R197.
Gain Scaling Resistor (R197)
R197 should be installed according the following table:
536 Kohm for 10 bits resolution
130Kohm for 12 bits
33Kohm for 14 bits
8.2Kohm for 16 bits

8. Applying power - Adjustments

Important remarks:

A. If all the previous steps were accomplished you may now disconnect the motor leads, turn the power on and continue with the following adjustments.

Step 1 - Applying Power

Apply power and check for LED Vs of the DCB that should be "ON", indicating that the system supplies are present. The display should read: "F-OK". If you get another message, refer to the following table to find the cause of the problem. Turn the power off, clear the cause of the problem and re-power the unit.

Event	Display	Display
after		
DIP switch 1 - ON	Recurring	
Load is under cont. current limit	BAUD	OK
Battery Low	BATT	B-OK
Abort condition (hardware only)	ABRT	A-OK
Amplifier's power stage disabled*	AMPD	H-OK
$-15 V ~ o u t ~ o f ~ l i m i t s ~$	$-15 V$	F-OK
Under or Over Voltage	VOLT	F-OK
+15V out of limits	+15V	F-OK
Over Temperature	TEMP	F-OK
Commutation problem	CMMT	F-OK
Short condition at the power outputs	SHRT	F-OK

[^9]
Step 2 - Establishing the communication

Press CR (carriage return) in the host several times until the DCB sends the message "Communication OK".

If you want to "lock" the baud rate in the DCB:

- Turn off the power and remove the amplifier from the rack if it is a rack version.
- Set DS1-OFF.

Now the baud rate you selected is stored in the SRAM.

```
It is possible to change DS1 at any time. However, the DCB will notice the change
only upon power on or hardware reset.
```


Step 3 - Checking the feedback elements

- Turn on the power.
- Rotate the motor shaft manually and interrogate the position with the instruction:

TP (CR)
The controller response should vary as the motor is turned. If this does not occur, check the feedback signals.

- When using the auxiliary encoder input, rotate the auxiliary encoder and interrogate the position with the instruction: PY.

The controller response should vary as the encoder is turned. If this does not occur, check the feedback signals. The DCB is counting quadrature pulses. This means that for encoders or resolvers the answer for a TP command will be 4 times the number of basic encoder pulses and for Pulse/Direction mode it will be twice the number of pulses.

Step 4 - Adjusting the current limits

Defining the amplifier type

- Define the maximum current of the amplifier by the instruction:

MCn
n - rated peak current of the amplifier in A as given in the table of chapter 3.

For example: n is 48 for $\operatorname{DBPF}-24 / 270$

Current limit adjustments

- Define the continuous current limit by the instruction:

CLn.m (n.m - current in A)

- Define the peak current limit by the instruction:

PLn.m (n.m - current in A)

- Define the maximum peak current duration by the instruction:

PDn.m (n.m - seconds)

Step 5 - Latch mode of the protective functions

All the protective functions activate internal inhibit. There are two modes of resetting the amplifier after the cause of the inhibit disappears:

Self Restart: (LMO)
The amplifier is inhibited only for the period that the inhibit cause is present.

Latch (LM1)

Each failure latches the Inhibit and the failure message on the display. For restart (after clearing the failure source), reset has to be performed by applying logic 0 at the reset input (H/R-17a,E-J3/21), or by turning the power off and on.

For safety reason it is recommended to use the amplifier in the LATCH MODE - LM1

Step 6 - Connecting the Motor

- Turn off the power.
- Connect the leads of the motor.
- Turn on the power.

For proper operation, the system must have negative feedback. If the motor remains in the same position and returns to the same position when you turn the motor shaft and let go, then the position feedback is negative as required. If the motor runs away you have positive feedback. To correct the feedback, just reverse the encoder leads.

9. Tables and Summaries

9.1 Display diagnostics

Each amplifier's fault is stored immediately in the DCB RAM. In addition to that, a Failure Message is displayed. Following are all the valid Display

Messages:

Event	Display	Display after Recurring
DIP switch 1 - ON	BAUD	OK
Load is under cont. current limit	CLIM	C-OK
Battery Low	BATT	B-OK
Abort condition (hardware only)	ABRT	A-OK
Amplifier's power stage disabled*	AMPD	H-OK
-15V out of limits	$-15 \mathrm{~V}$	F-OK
Under or Over Voltage	VOLT	F-OK
+15 V out of limits	+15V	F-OK
Over Temperature	TEMP	F-OK
Commutation problem (for brushless drives only)	CMMT	F-OK
Short condition at the power outputs	SHRT	F-OK

[^10]1. When MO (Motor Off) command is given.
2. Position error exceeds the allowed value.

9.2 Summary of DIP switches

Power stage board

(2 poles DIP switch)

DIP switch	OFF (UP)
DS1	60° commutation signals format
DS2	No CFM

Control stage board
(9 poles DIP switch)

DIP switch	ON	OFF
DS1	Auto-selection of Baud rate	Latch last value
DS2	Non-differential channel A	Diff. input of channel A
DS3	Non-differential channel B	Diff. input of channel B
DS4	Non-differential channel Ay	Diff. input of channel Ay
DS5	Non-differential channel By	Diff. input of channel By
DS6	Non-differential index	Diff. index
DS7	Pulse/Direction format	Encoder channels format
DS8	N/C	
DS9	RS485	RS232

4 poles DIP switch (for Resolver)

Switch	OFF	ON
DS11	Tacho signal disconnected	Tacho signal connected to error amplifier.
DS12	Standard encoder resolution	Non-standard encoder resolution
DS13	14 bit resolution (DS14-ON) 16 bit resolution (DS14-OFF)	10 bit resolution (DS14-ON) 12 bit resolution (DS14-OFF)
DS14	12 bit resolution (DS13-ON) 16 bit resolution (DS13-OFF)	10 bit resolution (DS13-ON) 14 bit resolution (DS13-OFF)

Appendix A - Current loop response

In most applications it is not necessary to adjust the current loop to achieve the optimum response. When there are extreme electrical parameters in the armature circuit (inductance and resistance) the standard components values of $0.01 \mu \mathrm{~F}$ for C 1 and 100 Kohm for R 4 may not yield with the optimum response. The current loop should be optimized as follows:

- Insert R7 (1K) to connect the tacho input to the error amplifier. The amplifier must not be configured into velocity mode. If the resolver option is used, make sure that DS11 is OFF.
- Apply power to the amplifier and send the command BA.
- Provide the tacho input $H / R-12 b, E-J 3 / 23$ with a bi-directional square wave current command ($100-200 \mathrm{~Hz}, \pm 2.0 \mathrm{~V}$ waveform is often employed).
- Monitor the load current either by a current probe or by the current monitor. If the current response is not critically damped, use the following procedure:
- Short circuit C1 with a short jumper wire.
- Replace R4 with a decade resistance box. Initially set the box resistance at 10Kohm.
- Apply the square wave test signal to the amplifier input.
- Apply power, and while monitoring the load current, gradually increase the value of the box resistance until optimum response as depicted in $F i g$ A-1 is achieved.
- Substitute the closest standard value discrete resistor for R 4 and remove the decade resistance box.
- Remove the shorting jumper across $C 1$, and again check the response using the square wave test signal.
- If the previous step does not yield satisfactory results, if unacceptable overshooting has been noted, substitute a larger value than $0.01 \mu \mathrm{~F}$; or, if the response is overdamped, substitute a smaller value than $0.01 \mu \mathrm{~F}$. Repetition of this procedure should yield an optimum choice for Cl .

C1 too large / R4 too small

Critically damped

C1 too small / R4 too large

Fig. A-1
Typical current response waveforms

Appendix B - Adding a velocity feedback

THIS PAGE IS BLANK

Appendix C - Differential amplifier connection

The differential amplifier is provided for your optional use. It can be used for buffering, inverting or elimination of common mode signals.

The differential amplifier inputs are available at terminals $H / R-9 b, E-J 3 / 1$, H/R-10b, E-J3/2. Terminal H/R-10b, E-J3/2 is the inverting input, terminal H/R-9b,E-J3/1 is the non-inverting input. The output is on terminal $H / R-11 b, E-J 3 / 3$. The differential amplifier can be internally connected to the summing junction by inserting R800.

The differential amplifier may be used as a buffer or as an eliminator of common mode signals. For a non-inverting buffer amplifier, connect the positive signal lead to terminal $H / R-9 b, E-J 3 / 1$ and the negative signal lead to terminal H/R-10b,E-J3/2, and connect terminal $H / R-10 b, E-J 3 / 2$ to the circuit common. For an inverting buffer amplifier, connect the positive signal lead to terminal H/R-10b,E-J3/2, the negative signal lead to terminal $H / R-9 b, E-J 3 / 1$, and connect terminal $H / R-9 b, E-J 3 / 1$ to the circuit common. The output of the differential amplifier is given by:

V_{1} - Input voltage of terminal $H / R-9 b, E-J 3 / 1$.
V_{2} - Input voltage of terminal $H / R-10 b, E-J 3 / 2$.

$$
\mathrm{V}_{1 \max } \leq 10+\mathrm{R} 3 ; \quad \mathrm{V}_{2 \max } \leq 100 / \mathrm{R} 2
$$

See schematic in chapter 4.

DIMENSIONAL DRAWINGS

IN THE FOLLOWING DRAWINGS ALL THE DIMENSIONS ARE IN MILLIMETERS.

PANEL (H), DBP1 104
PANEL (H), DBP2 107
PANEL (H), DBP3 110
PANEL (H), DBP4 113
PANEL (H), DBP6 116
RACK 3U/13T 119
RACK 3U/20T 122
RACK 6U/14T 125
RACK 6U/21T 128
ENCD - 3U/ 130
ENCD - 6U/ 131
EXTERNAL SHUNT RESISTOR 132

PANEL (H), DBP1

DBP1 - TOP VIEW

DBP1 - SIDE VIEW 2

PANEL (H), DBP2

DBP2 - TOP VIEW

DBP2 - SIDE VIEW 1

DBP2 - SIDE VIEW 2

PANEL (H), DBP3

PANEL (H), DBP4

DBP4 - TOP VIEW

DBP4 - SIDE VIEW 1

DBP4 - SIDE VIEW 2

PANEL (H), DBP6

FRONT VIEW

DBP6 - SIDE VIEW 1

DBP RACK MOUNTING (3U/ 13T)

SIDE VIEW 1

FRONT PANEL FOR DBP 3U/13T

DBP RACK MOUNTING (3U/20T) SIDE VIEW 1

DBP RACK MOUNTING (3U/ 20T) SIDE VIEW 2

RACK 6U/21T

DBP RACK MOUNTING (6U/21T)

SIDE VIEW 1

ENCD - 3U/...
ENCD - 3U/...

Standard Sizes

	12 T	16 T	20 T	24 T	36 T
X	62.0	82.3	102.7	123.0	184.0

For non-standard sizes:
$X=5.08 \mathrm{x} \mathrm{n}+1 \mathrm{~mm}$

ENCD - 6U/...

ENCD - 6U/...

NOTES: 1. ALL DIMENSIONS ARE IN mm.
2. $\mathrm{X}=\mathrm{n} \times 5.08+1, \mathrm{n}=$ number of T

EXTERNAL SHUNT RESISTOR

 EXTERNAL SHUNT RESISTOR (ESR)
. 508

$$
\mid 31.75
$$

List of ELMO Service Centers

> ISRAEL
> Elmo Motion Control LTD
> 34 Segula ST.
> Petah-Tikva 49103
> Tel: (03) $934-5059$
> Fax: (03) $934-5126$

U.S.A

Elmo Motion Control INC. 1200 Woodruff Road, Suite C-22, Greenville, SC 29607

Tel: (803) 288-9316
Fax: (803) 288-9318

EUROPE

```
Elmo Motion Control
```

Stanserstr. 7
CH-6362 Stansstad, Switzerland
Tel: (041) 610775
Fax: (041) 610778

	BENELUX
AUSTRIA	Eltromat B.V.
Kwapil	Looierij 26
POB 64	4760 AB Zevenbergen
A-1091 Wien	The Netherlands
Tel: (0222) 342597	Tel: (01680) 25925
Fax: (0222) 311203	Telefax: (01680) 28485

FINLAND

OY Scandrive
Elsankuja 2 K
SF-02231 Espoo
Tel: 358-0-8035044
Fax: 358-0-8035055

FRANCE

A 2 V SA
11-12 Rue Eugene HENAFF,
78190 Trappes,
Tel: (1) 30620101
Fax: (1) 30626204

GERMANY

IME GmbH
Brugger str. 8
D-78628 Rottweil
Tel: 0741/22091
Fax: 0741/22060

ITALY
Servotecnica SRL
Viale Lombardia 20
20095 Cusano Milanino (MI)
Tel: (02) 66401010
Fax: (02) 66401020

SWEDEN

Aratron AB
P.O.B 20087,

Kratsbodavagen 50,
S-16120 Bromma
Tel: 8-981875
Fax: 8-984281

UNITED KINGDOM

INMOCO Limited
4 Brunel Close
Drayton Fields
Daventry NN11 5LE
Tel: 0327/300320
Fax: 0327/300319

[^0]: * These are the absolute minimum-maximum AC supply voltage under any condition.

[^1]: * Vol<0.4V, Voh $>4 V$, Output level: $0-5 \mathrm{~V}$, max output current $\pm 5 \mathrm{~mA}$
 ** Vil<1V, Vih>2.4V, Maximum input voltage: +30VDC

[^2]: * Vil<1V, Vih>2.4V, Maximum input voltage: +30VDC

[^3]: * Vil<1V, Vih>2.4V, Maximum input voltage: +30VDC

[^4]: * Vol<0.4V, Voh>4V, Output level: $0-5 \mathrm{~V}$, max output current $\pm 5 \mathrm{~mA}$

[^5]: * Vil<1V, Vih>2.4V, Maximum input voltage: +30VDC

[^6]: * Vil<1V, Vih>2.4V, Maximum input voltage: $\pm 30 \mathrm{VDC}$

[^7]: * Vol<0.4V, Voh>4V, Output level: $0-5 \mathrm{~V}$, max output current $\pm 5 \mathrm{~mA}$

[^8]: In the S (standard) version zero crossing of phases $B C$ occurs at position address "0" of the Resolver.

[^9]: * The AMPD message appears in two cases:

 1. When MO (Motor Off) command is given.
 2. Position error exceeds the allowed value.
[^10]: * The AMPD message appears in two cases:

